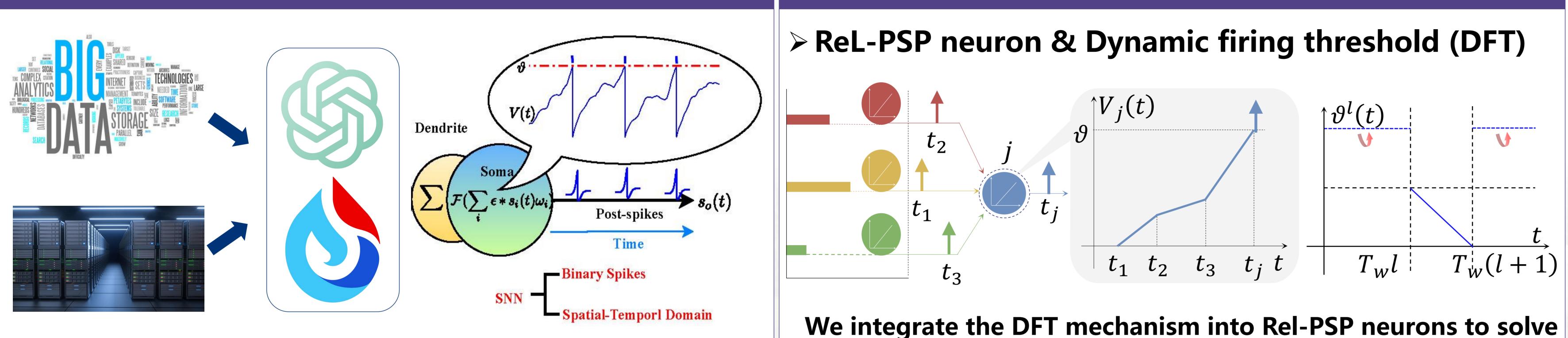
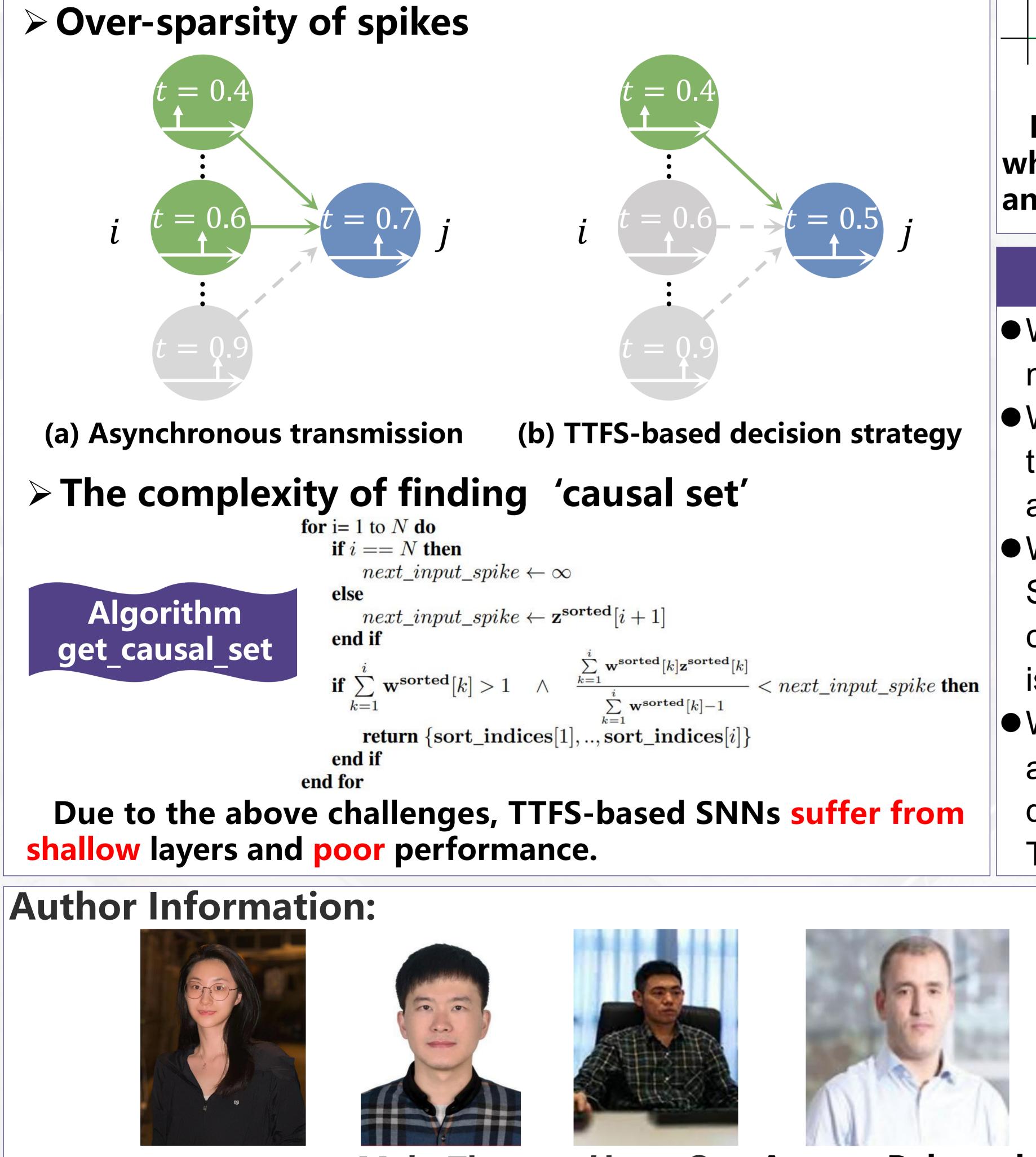


Motivation



(b) Energy-efficient alternative (a) High energy consumption Brain-inspired spiking neural networks (SNNs) provide an of each layer within the non-overlapping time window. energy efficient alternative to deep learning. As the SNN coding scheme, Time-To-First-Spike (TTFS) encodes information via the time of a single spike, further reducing the power consumption of SNNs.

Problem Analysis



Wenjie Wei

Malu Zhang

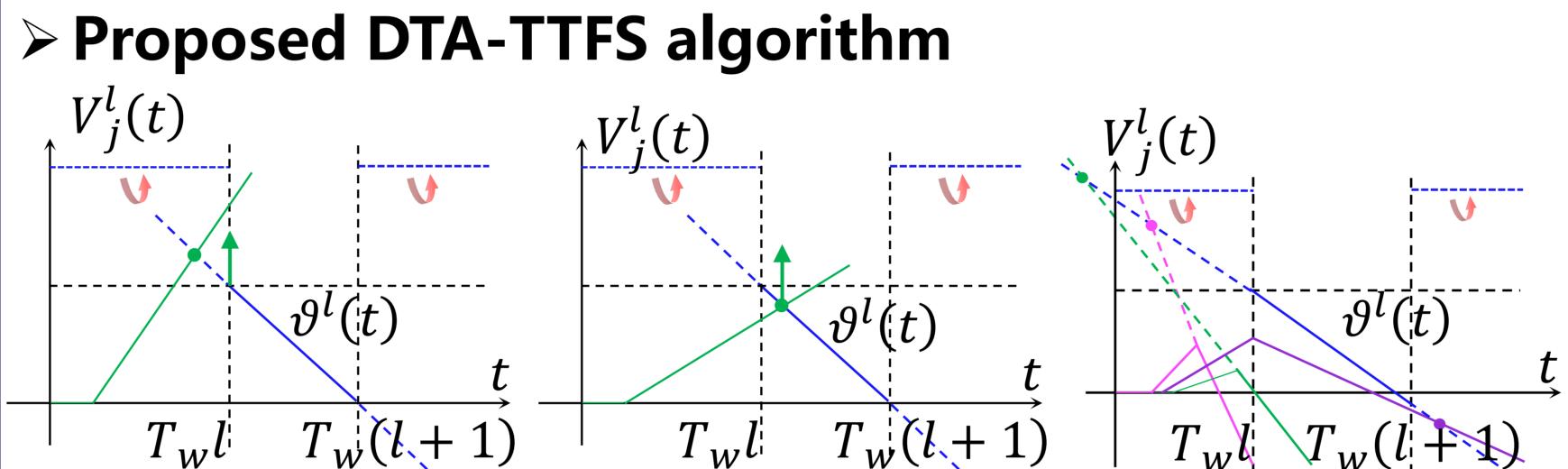
Temporal-Coded Spiking Neural Networks with Dynamic Firing Threshold: Learning with Event-Driven Backpropagation

Wenjie Wei, Malu Zhang, Hong Qu, Ammar Belatreche, Jian Zhang and Hong Chen University of Electronic Science and Technology of China, Northumbria University, Tsinghua University {maluzhang,hongqu}@uestc.edu.cn, ammar.belatreche@northumbria.ac.uk, hongchen@tsinghua.edu.cn}

Hong Qu Ammar Belatreche Jian Zhang

Hong Chen

the aforementioned issues, which regulates the spiking activity



Based on the DFT, we further propose the DTA-TTFS algorithm, where the single spike time is viewed as the information carrier, and the learning is performed strictly in an event-driven manner.

Conclusion

- •We comprehensively analyze the main shortcomings of existing
- the DFT, for spiking neurons that can effectively address the aforementioned issues.
- •We introduce a direct training algorithm for TTFS-based deep SNNs, namely DTA-TTFS, where the timing of a single spike is considered the basic information carrier and the learning process is performed strictly in an event-driven manner.
- We conduct experiments on benchmark image classification tasks, and achieves state-of-the-art accuracy. Furthermore, we demonstrate the ultra-low power capability of the SNN with DTA-TTFS on a developed neuromorphic accelerator CanMore.

methods to achieve high performance in TTFS-based deep SNNs. •We propose a simple yet efficient dynamic firing threshold, namely

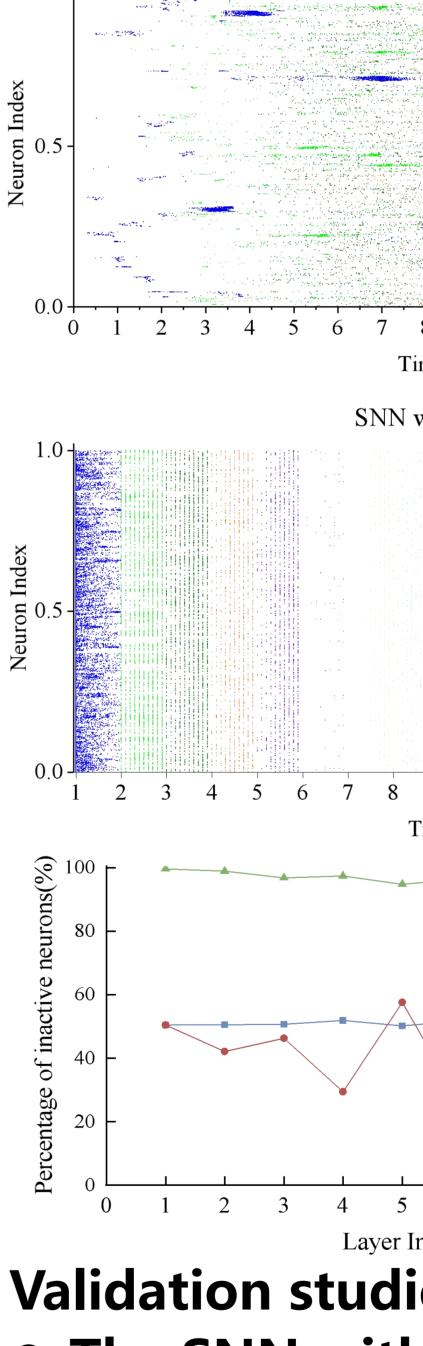
Acknowledgements:

National Science Foundation of China under Grant 62236007 National Science Foundation of China under Grant 61976043 National Science Foundation of China under Grant 62106038 Sichuan Science and Technology Program under Grant 2022YFG0313 Sichuan Science and Technology Program under Grant 2023YFG0259

> Performance Comparison

Datasets	Models	Network Architecture	Neural Coding	Method	Accuracy	Sparsity
	Mostafa 2017 [33]	MLP^1	TTFS	DT	97.55%	0.51
MNIST	Zhang et al. 2020 [58]	CNN^1	TTFS	DT	99.4%	0.6614
	Zhou et al. 2021 [60]	$\rm CNN^2$	TTFS	DT	99.33%	0.94
	DTA-TTFS	CNN^1	TTFS	DT	99.4%	0.3913
CIFAR-10	Wu et al. 2022 [46]	VGG11	Rate	conv	91.24%	no
	Park et al. 2020 [37]	VGG16	TTFS	conv	91.43%	0.2459
	Zhou et al. 2021 [60]	VGG16	TTFS	DT	92.68%	0.62
	Park et al. 2021 [38]	VGG16	TTFS	DT	91.90%	0.1746
	DTA-TTFS	VGG11	TTFS	DT	91.17%	0.4387
	DTA-TTFS	VGG16	TTFS	DT	93.05%	0.2561
-	Park et al. 2020 [37]	VGG16	TTFS	conv	68.79%	0.2994
CIFAR-100	Park et al. 2021 [38]	VGG16	TTFS	DT	65.98%	0.2780
	DTA-TTFS	VGG16	TTFS	DT	69.66%	0.2845

Validation Study



- **neurons** to that of ANN.

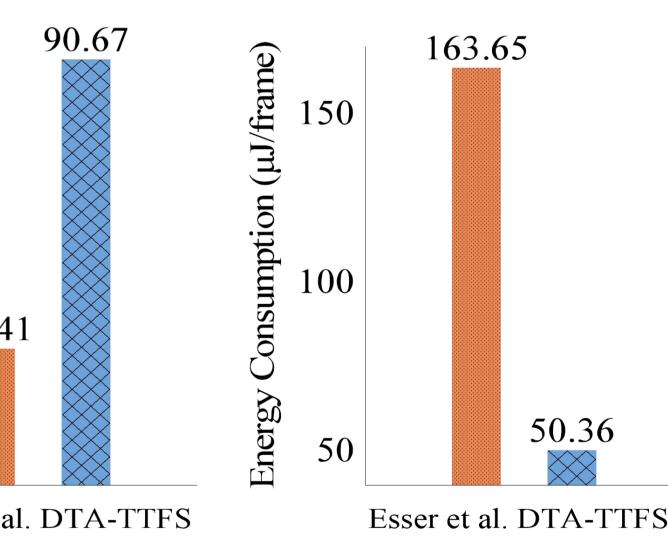
Experimental Results

The DTA-TTFS algorithm obtains SOTA performance, achieving a harmonious balance between accuracy and sparsity.

SNN with DF 90.67 Esser et al. DTA-TTFS

> Energy Consumption

Neural	Time	Spike	Acc.	Normalized Energy	
Coding	Step	(10^6)	(%)	TrueNorth	SpiNNaker
Rate [19]	512	2.612	93.39	1	1
Phase [26]	1500	35.196	91.21	7.1476	9.6785
Burst [36]	1125	6.92	91.41	2.3781	2.4865
TTFS [37]	680	0.069	91.43	0.8074	0.4950
TTFS [38]	544	0.067	91.9	0.6478	0.3989
DTA-TTFS	160	0.073	93.05	0.1987	0.1304



Both theoretical analysis and hardware validation prove the energy efficiency of our method.

Validation studies demontrate that :

• The SNN with DFT successfully regulate the spike activity in each layer within a permitted time window. • The SNN with DFT exhibits a comparable amount of inactive

