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Accuracy and model size comparison > Performance Com pari son
on CIFAR-10
@ Table 1: Classification performance comparison on both static image datasets and neuromorphic datasets.
OF5 - Q-SNN
1.62MB Dataset Method Architecture Learning Bit Width Timestep Accuracy

94 Full-Precision SNN*  ResNet19 Direct train  32w-32u! 2 96.36%
Yoo et al. Roy et al. [43] VGG ANN2SNN  1w-32u - 88.27%
E 931 [2023] Zhou et al. Rueckauer et al. [44] 6Conv3FC ANN2SNN  1w-32u - 88.25%
< . SO [2021] Wang et al. [50] 6Conv3FC ~ ANN2SNN  1w-32u 100 90.19%
5 92 ; 13.63MB Yoo et al. [60] VGG16 ANN2SNN  1w-32u 32 91.51%
g 0 CIFAR-10 Deng et al. [12] 7Conv3FC Direct train  1w-32u 8 89.01%
9 1 Wang et al. Pei et al. [35] 5Conv1FC Direct train  1w-32u 1 92.12%
<T 12 E',F,u | Zhou et al. [63] VGG16 Direct train  2w-32u - 90.93%
90 l i}, 5‘71:.! B Deng et al. 5 Yin et al. [59] ResNet19 Direct train 2w-2u 4 90.79%
I [2021] 4N 1w-8u 2 95.54%
g9 - 15.5MB; - Proposed Q-SNN ResNet19 Direct train 1w-4u 2 95.31%
oy 1w-2u 2 95.20%
88 - J : : : Full-Precision SNN*  ResNet19 Direct train 32w-32u 2 79.52%
Tw-2u 2wW-2u 1w-32u 2w-32u Roy et al. [43] VGG16 ANN2SNN  1w-32u - 54.44%
Rit Width Lu et al. [31] VGGI5 ANN2SNN  1w-32u 400 62.07%
ag = . - = Wang et al. [50] 6Conv2FC ANN2SNN  1w-32u 300 62.02%
B Spiking Neural Networks (SNNs) provide an energy-efficient para- CIFAR-100 Yoo et al. [60] VGG16  ANN2SNN  lw-32u 32 66.537%
_ . . . . Deng et al. [12] 7Conv3FC Direct train 1w-32u 8 55.95%
digm for the next generation of machine intelligence. Pei et al. [35] 6ConvIFC _ Direct train _1w-32u 1 69.557%
i i} 1w-8u 2 78.77%
B However, the current SNN community focuses mainly on accuracy BRposSiZSNNr  RENEGS | DEcEitAin Tesm 2 ini
w-4u . (3
improve-ment by developing large-scale models, which limits the Bl PRS- NGEIG  Diethimio Shwédn BT
Direct train 8w-8u 4 50.18%
I 15 1 _limi 1 : Yin et al. [59] VGG16 Direct train 4w-4u 4 49.36%
applicability of SNNs in resource-limited edge devices. TinylmageNet Direct train dw-du 4 1307
- - - - 1w-8u = 55.70%
B We propose a lightweight Quantized SNN (Q-SNN) that quantizes BoponellEENET  WEST Diect a1 o o
- - - - g - 1w-2u 4 55.04%
both weights and membrane potentials, significantly reducing S T iNT T Tt s o 2 107
- - Qiao et al. [37] 2Conv2FC Direct train 1w-32u 25 62.10%
memory usage and computa-tional complexity. Pei et al. [35] SConvIFC  Direct train 1w-32u 10 65.987%
DVS-CIFAR10 Yoo et al. [60] 16ConvlFC  Direct train 1w-32u 16 74.70%
Proposed Q-SNN VGGSNN Direct train 1w-4u 10 81.50%
- g = 1w-2u 10 80.00%

» Quantized Spiking Neural Network (Q-SNN)

Q-SNN further exploits the efficiency advantage inherent to SNNs while
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B Firstly, the proposed Q-SNN quantizes the synaptic weight into a 1- : Z Z ; Z . Z g Z é
bit representation, which is formulated as: om0 — e o g R e o g o
+1, = 0,
()= () ()= 1 (b) Ablation sty tortie WSDR ~ (c) Baich BiEWidth ResNef(o VGG16 VGGSNN
: . . i 98- it Width: 1w-2u ~ 32w-32u  50.80 (-0.00%) 59.16 (-0.00%) 37.44 (-0.00%)
_ SECOndIy, Q'SNN quantIZES the membrane pOtentlaI tO d IOW blt'Wldth ﬁltvw\hjtﬂ ;sz_?)zu "I‘El_, 1w-8u 1.75 (-96.56%) 1.96 (-96.69%) 1.31 (-96.50%)
integer, such as 2, 4, and 8, described as: 96.36% S lwdu  168(-96.69%) 1.93(-96.74%) 1.25(-96.66%)
= 96 —— 1w-2u  1.65(-96.75%) 1.91(-96.77%) 1.21 (-96.77%)
()= (2 ~1—-1) 11 = ol v 32w-32u  83.83(-0.00%) 75.67(-0.00%) 70.47 (-0.00%)
2 1—-1 o & - I 1w-8u 100 (-88.07%) 6.09 (-91.95%) 9.57 (-86.42%)
"""""""""""""""""""""""""""""" T 5 93.42% S 1w-4u  5.81(-93.07%) 3.99(-94.73%) 5.38 (-92.37%)
» Challenges Analysis of Q-SNN 2 S {w-2u  3.72(9556%) 2.94(-96.11%) 3.28 (-95.35%)
_ o o _ 99 2 32w-32u  184.49 (-0.00%) 126.01 (-0.00%) 171.13 (-0.00%)
B While Q-SNNs exhibit significant energy efficiency, their task perfor- U lw-8u  35.17(-80.94%) 18.67 (-85.18%) 34.74(-79.70%)
. i . . S lw-4u  18.40(-90.03%) 10.28 (-91.84%) 17.96 (-89.51%)
Maince |agS Slgnlflcantly bEhInd fU"-pTECISIOﬂ SN NS. 90 e 1w-2u 10.01 (.94_57%) 6.09 (-95.17%) 9.57 (-94_41%)

Q-SNN Q-SNN+WS-DR FP SNN

B Inspired by the information theory, we attribute this performance

gap to the limited information representation capability of Q-SNNs. B (2): The WS-DR method enhances the information content of both

P T e I synaptic weights and spike activities in the Q-SNN baseline.
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¢ % % 2 % 1. ineach layer approaches 0, : (b)_' Q_SNN :"th WS_ D_R a((j:h;]eves Compifr_ 3P|e accm; racy t0b32 bit SNN
Sl 2Bl A L, 4 /lj resulting in severely limited (c): Q-SNN has maximized the energy efficiency of SNNs by quantizing
R Iﬂ; ? 1&; ~= information content carried by . both synaptic weights and membrane potentials.
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R T PP B We introduce a novel SNN architecture, called Q-SNN, designed for
» Weight-Spike Dual Regulation Method efficient hardware implementation and low energy consumption. Q-
B For the 1-bit weight in Q-SNN, we apply a normalization technique: SNN achieves this goal by employing the quantization technique on
= - ) . both synaptic weights and membrane potentials.
B For the 1-bit spike activity, we design a loss function: B We analyze how to enhance Q-SNN's performance from the informa-
-1 2 1 tion entropy theory and propose a novel Weight-Spike Dual Regulation
- . C=0s == o | (WS-DR) method to maximize the information content in Q-SNNS.
By integrating these two approaches, the weight and spike in Q-SNNs B Extensive experirr_lental demonstrate_that our method achieves state-
can carry more information content, thus mitigating the performance of-the-art results in terms of both efficiency and performance, under-
degradation caused by information loss during the quantization process. scoring its capability to boost the development of edge computing.




